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Abstract

The acquisition of global navigation satellite system signals can be performed

using a fast Fourier transform (FFT). The FFT-based acquisition performs

a circular correlation, and is thus sensitive to potential transitions between

consecutive periods of the code. Such transitions are not occurring often for

the GPS L1 C/A signal because of the low data rate, but very likely for the

new GNSS signals having a secondary code. The straightforward solution

consists in using two periods of the incoming primary code and using zero-

padding for the local code to perform the correlation. However, this solution

increases the complexity, and is moreover not efficient since half of the points

calculated are discarded. This has led us to research for a more efficient

algorithm, which discards less points by calculating several sub-correlations.

It is applied to the GPS L5, Galileo E5a, E5b and E1 signals. Considering

the radix-2 FFT, the proposed algorithm is more efficient for the L5, E5a

and E5b signals, and possibly for the E1 signal. The theoretical number

of operations can be reduced by 21 %, the processing time measured on a
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software implementation is reduced by 39 %, and the memory resources are

almost halved for an FPGA implementation.
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1. Introduction

The satellites of the global navigation satellite systems (GNSSs), such

as the American GPS or the European Galileo, send continuously signals in

direction of the Earth. Those signals have mainly three components [1] : 1)

Navigation data, which is a binary-coded message of +1 and -1 transmitted

at low rate to provide the information necessary for the navigation, such as

time and ephemeris; 2) A ranging code, which is a long known sequence of +1

and -1 specific to each satellite and transmitted at high rate. This code, also

called pseudo-random noise (PRN) code, allows precise ranging and let the

satellites to broadcast signals at the same frequencies (principle of the code

division multiple access, CDMA). The values of the PRN codes are called

chips instead of bits, to emphasize that they do not carry information, unlike

bits of data; 3) A carrier, which is a sinusoidal signal whose frequency is in

the L band.

After the antenna, and after the front-end, which downconverts the radio

frequency signal to baseband by removing the carrier and performs the digi-

tization, the first stage of a GNSS receiver is the acquisition [1]. Its purpose

is threefold : 1) Detect the satellites in view; 2) Obtain a rough estimation

of the received carrier frequency, because there is an uncertainty due to the

Doppler effect and the receiver oscillator inaccuracy; and 3) Obtain a rough

estimation of the phase of the PRN code transmitted, which is unknown
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without time synchronization and a priori knowledge of the geometry.

The recently introduced GPS and Galileo signals bring new features com-

pared to the initial civilian GPS L1 C/A signal, such as a higher power, longer

codes for a better cross-correlation between satellites signals, pilot channels

that do not carry data to facilitate long integrations and improve the sensi-

tivity threshold, and secondary codes that are short PRN codes to make the

data synchronization easier [2].

The secondary code is, as indicated by its name, a second code, which

multiplies the primary code to form a longer code (called tiered code). The

rate of the secondary code is lower than that of the primary code, since the

length of one chip of the secondary code is equal to one period of the primary

code, as shown in Fig. 1. The presence of a secondary code brings advantages

and additional performance, but also makes the acquisition more difficult

[2]. Exploiting the secondary code adds a third dimension to the acquisition

search (besides the Doppler frequency and primary code dimensions), and

implies the use of long coherent integration times, which impacts also the

search in the Doppler frequency dimension. The secondary code is typically

used to acquire very weak signals, such as in indoor or urban environment

[3]. However, it is still possible to perform the acquisition using only the

primary code, with the possibility to synchronize with the secondary code

afterwards if the sensitivity is not the priority. This article focuses on this

case.

Even in the cases where the secondary code is not exploited, the potential

transitions between consecutive periods of the primary code prevent the di-

rect use of the Parallel Code-phase Search (PCS) architecture [1], which uses
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FFTs over one period of the primary code to perform correlations, because

it can result in very high losses leading to the non-detection of the signal [4],

as shown in Fig. 4.

There were different propositions to overcome this problem, well summa-

rized in [5]. The straightforward solution consists in using two periods of the

incoming primary code and one period of the primary code padded with zeros

for the local code to perform the correlation [6], [4], as shown in Fig. 5. How-

ever, this solution increases the complexity and is clearly not efficient since

half of the points calculated are unused. To tackle this problem, we propose

a new algorithm that discards less points, by transforming the initial correla-

tion into two or more sub-correlations. This algorithm, briefly introduced in

[7], is not an approximation but an another way to compute the samples of

interest, consequently there is no degradation of the sensitivity. The concept

has some similarities with classical divide-and-conquer approaches such as

the overlap-and-add or overlap-and-save method [8], although different.

The straightforward and proposed algorithms are first applied to the GPS

L5, Galileo E5a and E5b signals, which are equivalent for the purpose of our

problem because the length of their primary code is identical and they have

the same modulation. Both algorithms are then applied to the Galileo E1

signal, considering the Binary Offset Carrier (BOC(1,1)) modulation and

the Binary Phase Shift Keying (BPSK) modulation. The comparison of the

algorithms is done for a hardware implementation in an Field Programmable

Gate Array (FPGA), as well as for a software implementation using Matlab.

The paper is organized as follows. Section 2 provides the characteristics

of some of the GNSS signals and a brief description of the acquisition. Sec-
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tion 3 presents the PCS, the problem due to the secondary code, and the

straightforward solution. Section 4 details the proposed algorithm, with a

discussion on the particular case in which the FFT length is constrained to be

a power of two. Section 5 includes the comparison of both algorithms for the

GPS L5, Galileo E5a and E5b signals. Section 6 includes the comparison for

the Galileo E1 signal processed as a BOC(1,1), and Section 7 for the Galileo

E1 signal processed as a BPSK. Section 8 concludes on the results obtained

and on the applicability to other GNSS signals and for other domains.

2. GNSS signals acquisition

2.1. New GNSS signals

The GPS L5, Galileo E5a and E5b signals consist each of two quadrature

components (Quadrature PSK modulation), one including PRN codes and

data (I channel) and the other including PRN codes only (Q channel). A

detailed description of the GPS L5 signal can be found in [9] and [10], and in

[11] and [12] for the Galileo E5 signal. The QPSK signal received from one

satellite can be modelled as

s(t) =
√
Pcpi(t− τ)csi(t− τ)d(t− τ) cos(2π(fL + fd)t+ ϕr))

+
√
Pcpq(t− τ)csq(t− τ) sin(2π(fL + fd)t+ ϕr)),

(1)

where P is the total received power in Watt, cpi and cpq are the primary codes

for the I and Q channels, csi and csq are the secondary codes for the I and Q

channels, d is the data, τ is a propagation delay in second, fL is the carrier

frequency in the L band in hertz, fd is the Doppler frequency in hertz, ϕr

is a phase in radian, and t is the time in second. After the front-end, which
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downconverts the signal to an intermediate frequency and digitizes it, the

signal is

s[n] =
√
Pcpi[n− τ/Ts]csi[n− τ/Ts]d[n− τ/Ts] cos(2πFrn+ ϕ))

+
√
Pcpq[n− τ/Ts]csq[n− τ/Ts] sin(2πFrn+ ϕ)),

(2)

where Ts is the sampling period in second, Fr = (fif + foffset + fd)Ts is the

normalized received frequency that includes the intermediate frequency fif ,

the offset due to the local oscillator foffset and the Doppler frequency, and ϕ

is a phase in radian (for simplicity, the noise is not included since it is not

relevant for the derivations that follow). The Galileo E1 signal is slightly more

complex because it includes subcarriers, causing the modulation to become

a CBOC(6,1,1/11) [12]. However, the E1 signal can also be processed as a

BOC(1,1) [13] or a BPSK signal [14] to reduce the receiver complexity.

The signals properties are given in Table 1, where it can be seen that the

length of the primary codes is identical for the L5, E5a and E5b signals, this

is why they are equivalent from the point of view of the acquisition problem

discussed in this article. An illustration of the primary and secondary codes

and data for the I channel of the GPS L5 signal is given Fig. 1. The three

components are always synchronized, i.e. a data transition occurs only at the

transition of the first chip of the secondary code, and a transition between

two chips of the secondary code occurs only at the transition of the first chip

of the primary code.

2.2. Acquisition

The goal of the acquisition is to detect the satellites in view and estimate

the normalized Doppler frequency Fd and the code delay τ in Eq. 2. The
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processing consists of three steps as shown in Fig. 2 : 1) Multiplication with

a complex exponential of the same frequency as the Doppler frequency; 2)

Multiplication by the primary code of the satellite searched with the same

phase as the incoming code; and 3) Accumulation over one or several code

periods, in order to increase the signal-to-noise ratio (SNR). Since Fd and

τ are not known, different possibilities have to be tested until the signal is

detected. In a serial search, the possibilities are tested one after each other.

For the E1 signal processed as BOC(1,1), the local replica contains the code

and the subcarrier, the rest is identical.

For a static user, the Doppler frequency is between ± 4.2 kHz for the GPS

L1 C/A signal [15]. Making an adjustment for the carrier frequency (the

Doppler being proportional to it) and the constellation (the Galileo satellites

are slower as they have a higher altitude than the GPS satellites), the Doppler

frequency is approximately ± 3.1 kHz for the L5 signal, ± 2.7 kHz for the

E5a and E5b signals, and ± 3.6 kHz for the E1 signal. The offset due to the

local oscillator is usually between 0 and few kHz, the limit depending on the

oscillator accuracy [15]. The step between two frequencies to test depends on

the integration time used. Two rules of thumb can be found in the literature,

1/(2T ) and 2/(3T ), where T is the integration time in second, which provides

a maximum loss of 0.91 dB and 1.65 dB, respectively [15]. Regarding the

primary codes, the range is their length, e.g. 10 230 chips for the L5, E5a and

E5b signals, and the usual step between two phases tested is 1/2 chip for a

BPSK modulation and 1/6 chip for a BOC(1,1) modulation, which provides

a maximum and average loss of 2.50 dB and 1.16 dB, respectively [16].

For example, with the GPS L5 signal, using an integration time of 1
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ms (which corresponds to one primary code period) and a frequency step of

500 Hz, there are 265 980 possibilities (
⌈
2×3100
500

⌉
× 10 230

1/2
) to test. Moreover,

this process is repeated for each satellite searched (around 30 per constella-

tion). This shows the complexity of the acquisition, and motivates the use

of fast acquisition methods, such as the parallel code-phase search described

in Section 3.

3. Parallel Code-phase Search

As can be seen in Fig. 2, the second part of the acquisition processing

corresponds to a correlation. It is well-known that the circular correlation

between two signals can be computed efficiently using an FFT, as shown

in Eq. 3, where h and x are the signals to correlate, the overbar denotes

the complex conjugate, mod denotes the modulo operation, N is the length

of the signals and also corresponds the FFT length here, and IFFT means

Inverse FFT [8]. This means that using FFTs, it is possible to obtain the

correlation results for all the code phases at the same time as shown in Fig.

3, hence the name of parallel code-phase search; where h corresponds to the

local replica cpx, x corresponds to the signal after the multiplication with

the complex exponential, and y corresponds to the correlation result rFd
for

all the code phases. From now on, this notation is used, because it is the

one usually used for digital filtering. Calculating the correlation with Eq. 3

corresponds to fixing h and circularly rotating x to the left, or equivalently
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fixing x and circularly rotating h to the right.

y[n] =
N−1∑
k=0

h[k]x[(n+ k) mod N ] with n = 0, ..., N − 1

y = IFFT
(

FFT(h) FFT(x)
)

(3)

3.1. FFT length

There exist several FFT algorithms, which have a complexity ofO(L logL)

instead of O(L2), L being the FFT length [17]. However, they have differ-

ent performance depending on the value of L. The most common algorithm

is the Cooley-Tukey algorithm, which requires that L be a composite num-

ber [18]. This algorithm is more efficient when L has small prime factors.

The simplest and the most common form of this algorithm is the well-known

radix-2 FFT, in which the only prime factor is two, i.e. L is a power of

two. The FFT provided by the FPGA and digital signal processor (DSP)

companies is highly optimized for their chip and requires a length that is a

power of two. There are also algorithms that can perform the FFT when L

is a prime number, less efficiently however [19], [20]. A state of the art of

FFT algorithms can be found in [17].

In the PCS, the FFT is performed on one period of the primary code, the

FFT length is thus L = N = fs × Tp, where fs is the sampling frequency in

hertz and Tp the length of one period of the primary code in second (1 ms for

the L5, E5a and E5b signals, and 4 ms for the E1 signal). With the PCS, the

code step corresponds to one sample, since the minimum shift is one sample.

Thus, to have a code step of 1/2 chip, the sampling frequency must be twice
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the chipping rate; the FFT length is then twice the number of chips in one

period of the primary code, i.e. fs = 20.46 MHz and L = 20 460 for the L5,

E5a and E5b signals, and fs = 2.046 MHz and L = 8184 for the E1 signal

processed as BPSK. To have a code step of 1/6 chip, the sampling frequency

must be six times the chipping rate, thus fs = 6.138 MHz and L = 24 552

for the E1 signal processed as BOC(1,1).

It should be noted that these sampling frequencies are suitable for the

acquisition, but not for the positioning. Indeed, it is well-known that the

sampling frequency should not be a multiple of the chipping rate because

a shifted version of a code can result in the same sequence, implying poor

positioning resolution [21]. Taking this into account, the minimum value for

L should be increased by at least one sample.

3.2. Impact of the secondary code

As shown in Fig. 1, the secondary code implies that a transition can

occur between two consecutive primary code periods. When the acquisition

is performed through a serial search as depicted in Fig. 2, the correlation is

not circular and the integration of the signal always starts at the first chip of

the primary code, therefore there is never a transition during the integration.

However, in the PCS, the incoming code used for the circular correlation can

start at any chip, i.e. the signal is usually composed of portion of two different

primary code periods, as shown in Fig. 4 (b). When the local replica of the

primary code is aligned with the incoming primary code, the magnitude of

the correlation peak is maximum only if there is no transition (Fig. 4 (a)).

Else, in case of transition, the correlation peak is reduced (Fig. 4 (b)), or

even vanishes if the incoming primary code starts at the middle of the period
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(Fig. 4 (c)). In fact, the problem is worst than a simple non-detection,

because there may be a correlation peak detected at an incorrect frequency

F̂d [5], which means that the receiver will start tracking the signal incorrectly

and waste time before performing again an acquisition.

3.3. Straightforward solution

There have been several propositions to overcome this problem [5]. The

straightforward solution consists in using two consecutive periods of the in-

coming primary code and one period of primary code padded with zeros for

the local replica to perform the correlation [6], [4]. In this way, there is

always one period of the incoming code free of transition, and thus a max-

imum correlation peak, as illustrated in Fig. 5 (the sign of the peak is not

important, only its magnitude is). It can be seen that there is a second peak,

equal to the one of Fig. 4 (b). Indeed, since there are two periods of the

incoming primary code, the local code is correctly aligned twice. However,

the magnitude of the first peak is always maximum, whereas the second peak

can be reduced or vanish due to the transition. Since the first peak always

occurs in the first half of the correlation, the second half of the correlation is

discarded. This, of course, is not computationally efficient. The next section

explains the proposed algorithm to obtain the first half of the correlation

while discarding fewer points.

Since now two periods of the primary code are used, the minimum value

for N and L is 40 920 for the L5, E5a and E5b signals, 49 104 for the E1 signal

processed as BOC(1,1), and 16 368 for the E1 signal processed as BPSK. If

needed, a higher value for N and L can be used, by increasing the sampling

frequency (which would reduce the code step and thus the associated loss)
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or by using zero-padding on both signals.

4. Proposed Algorithm

The idea of the proposed algorithm is to transform the initial correlation

into two or more sub-correlations of smaller size. The proposed algorithm

exploits two facts for this : 1) Half of the points of one of the signals are zero;

and 2) Half of the points of the correlation output are discarded. A third

fact will be exploited for the gain in efficiency, the usage of zero-padding.

The proposed algorithm is not just a decomposition of the correlation as it is

done in [22], because here not all the points are computed, and the algorithm

modifies the values of the samples that are discarded (which has no impact on

the samples of interest). The algorithm is also different from techniques such

as overlap-and-add or overlap-and-save, because the sub-correlations do not

correspond to different portions of the correlation, but they are all involved

in all the output samples.

4.1. Algorithm to obtain two sub-correlations

The simplest form of the proposed algorithm consists in transforming the

initial correlation of N points into two sub-correlations of 3N/4 points, as

detailed step by step in Appendix A. The operation performed is given by

Eq. 4. Using the linearity property of the IFFT, the proposed algorithm per-

forms thus four FFTs and one IFFT of 3N/4 points, whereas the traditional

algorithm performs two FFTs and one IFFT of N points. The first N/2

points of the result are identical to those of the initial correlation, while the
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other points are different, which is not important since they are discarded.

yM = IFFT
(

FFT(h0) FFT(x0)
)

+ IFFT
(

FFT(h1) FFT(x1)
)

= IFFT
(

FFT(h0) FFT(x0) + FFT(h1) FFT(x1)
)

(4)

with

h0 =
[
h[0] h[1] . . . h

[
N
4
− 1
] N/2︷ ︸︸ ︷

0 . . . 0
]

h1 =
[
h
[
N
4

]
h
[
N
4

+ 1
]
. . . h

[
N
2
− 1
]

0 . . . 0
]

x0 =
[
x[0] x[1] . . . x

[
3N
4
− 1
]]

x1 =
[
x
[
N
4

]
x
[
N
4

+ 1
]
. . . x [N − 1]

]
If needed, the algorithm can also perform the sub-correlations on 3N/4−1

points, by removing the last samples of hi and xi (i = 0, 1), as explained in

Appendix B. It can also perform the sub-correlations on 3N/4 + p points,

by adding p zeros at the end of hi and xi (i = 0, 1). The utility of this is

shown in Section 4.3.

4.2. Algorithm complexity

Considering that an FFT of N points requires approximately N log(N)

multiplications, the traditional algorithm requires approximately 3N log(N)+

N multiplications, while the proposed algorithm requires 53N
4

log(3N
4

) + 23N
4

multiplications. The approximate number of multiplications is thus greater

for the proposed algorithm.

This means that while the initial aim of finding a new algorithm was

to decrease the complexity of the traditional algorithm by computing less
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points, the proposed algorithm in fact requires more operations when the

same correlation length N is used. However, for the cases when N needs to

be increased significantly using zero-padding to obtain a specific FFT length

(especially for obtaining powers of two), the proposed algorithm can be very

advantageous as shown in the next sections.

4.3. Use with the radix-2 FFT

The proposed algorithm performs FFTs on 3N/4 points. If the use of

radix-2 FFTs is desired, there is the constraint given by Eq. 5, with l a

positive integer. Unfortunately, this equation has no integer solutions.

3N

4
= 2l ⇔ N =

4

3
2l (5)

However, it has been shown that the length of the signals could also be

3N/4 − 1. In this case, the constraint is given by Eq. 6. This equation has

integer solutions if l is odd, and the result for a range of suitable values is

provided in Table 2.

3N

4
− 1 = 2l ⇔ N =

4

3
(2l + 1) (6)

It has been shown as well that the length of the signals could also be

3N/4 + p. For p = 1, the constraint is given by Eq. 7. This equation has

integer solutions if l is even, and the result for a range of suitable values

is provided in Table 3. The interest in adding zeros to the signals is now

clearer; it gives more flexibility regarding the length of the signals.

3N

4
+ 1 = 2l ⇔ N =

4

3
(2l − 1) (7)
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To make the link with the GNSS signals, the FFT length for the tra-

ditional and proposed algorithms in function of the sampling frequency is

provided in Table 4, considering a code of 1 ms. It can be seen that there

are two possibilities, alternatively either the FFT length for the proposed

algorithm is half the FFT length of the traditional algorithm, or the FFT

lengths are identical. For example, with a sampling frequency of 21 MHz,

the traditional algorithm uses FFTs of 65 536 and the proposed algorithm

uses FFTs of 32 768 points; indeed, two code periods correspond to 42 000

samples, consequently, the traditional algorithm needs zero-padding up to

65 536, while the proposed algorithm needs zero-padding up to 43 692 only,

using FFTs of 32 768. However, with a sampling frequency of 24 MHz, the

traditional algorithm still uses FFTs of 65 536 but the proposed algorithm

now uses FFTs of 65 536 points. It is clear that when the FFT lengths are

identical, the proposed algorithm is not interesting since it computes more

FFTs. On the other case, the complexity is reduced since the proposed al-

gorithm requires 5N
2

log(N
2

) + 2N
2

multiplications, which means a reduction

of at least 20 %.

4.4. Algorithm to obtain P sub-correlations

The proposed algorithm can be generalized to more than two sub-correlations,

as follows. To obtain P sub-correlations, h and x must each be decomposed

into P components, respectively hi and xi with i = {0, 1, ..., P −1}, of P+1
P

N
2

points where :

• hi contains 1
P

N
2

points of h and N
2

points of zeros.

15



• xi contains P+1
P

N
2

points of x.

• hi and xi start at the samples i
P

N
2

of h and x, respectively.

The operation, defined by Eq. 8, requires 2P FFTs and one IFFT of P+1
P

N
2

points.

yM,P = IFFT

(
P−1∑
i=0

(
FFT(hi) FFT(xi)

))
(8)

with

hi =
[
h
[

i
P

N
2

]
h
[

i
P

N
2

+ 1
]
. . . h

[
i+1
P

N
2
− 1
] N/2︷ ︸︸ ︷

0 . . . 0
]

xi =
[
x
[

i
P

N
2

]
x
[

i
P

N
2

+ 1
]
. . . x

[
i+1+P

P
N
2
− 1
]]

If needed, the number of points can be P+1
P

N
2
− 1, requiring only to remove

the last sample of hi and xi (i = {0, 1, ..., P − 1}). The number of points can

also be P+1
P

N
2

+ p, requiring only to add p zeros samples at the end of hi and

xi (i = {0, 1, ..., P − 1}).

Note that as P increases, the number of output samples get closer to

N/2, which is the number of samples of interest. However, the efficiency of

the algorithm decreases because the number of FFTs increases linearly with

P while the FFT length reduces only as P+1
P

, consequently the number of

sub-correlations should be as low as possible.

4.5. Use with the radix-2 FFT with three sub-correlations

The proposed algorithm with three sub-correlations performs FFTs on

2N/3 points. If the use of radix-2 FFTs is desired, there is thus the constraint
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given by Eq. 9, with l a positive integer. This equation has always integer

solutions, and the result for a range of suitable values is provided in Table 5.

A similar calculation can be done for any value of P .

2N

3
= 2l ⇔ N =

3

2
2l = 3 2l−1 (9)

5. Application for the acquisition of the L5, E5a and E5b signals

In this section, the traditional and proposed algorithms are compared for

the acquisition of the GPS L5, Galileo E5a and E5b signals. First, we fix the

correlation length (N) and the FFT length (L). Since the minimum length

requires already relatively large FFTs, we will concentrate on values close to

this minimum. Three cases are considered : 1) The use of the smallest FFT

length (and thus correlation length), imposed by the length of the primary

code and the modulation; 2) The use of the smallest FFT length that has

2 and 3 as prime factor only; this allows probably the use of a faster FFT

algorithm; and 3) The use of the smallest FFT length that is a power of two,

to use the fastest FFT algorithm and to check the conclusion obtained in

Section 4.3.

5.1. Correlation and FFT lengths

As explained in Section 3.3, the smallest correlation length is N = 40 920

for the GPS L5, Galileo E5a and E5b signals.

For the first case considered, the FFT length is 40 920 for the traditional

algorithm, and 30 690 (3/4 × 40 920) for the proposed algorithm with two

sub-correlations. Since the FFT lengths have relatively high prime factors
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(40 920 = 23× 3× 5× 11× 31), it can be expected that the performance will

be better for the next cases.

For the second case, the smallest number higher than 40 920 that has 2

and 3 as prime factors only is 41 472 = 29 × 34. The FFT length is thus

41 472 for the traditional algorithm, and 31 104 (27 × 35) for the proposed

algorithm with two sub-correlations.

For the third case, the smallest power of two higher than 40 920 is 65 536,

the FFT length is thus 65 536 for the traditional algorithm. For the proposed

algorithm, according to Tables 2 and 3, the most suitable correlation length

using two sub-correlations is 43 692 (suitable means the smallest correlation

length (N) in the tables higher than 40 920), with an FFT length of 32 768.

This means that the FFT length is divided by two compared to the traditional

algorithm for this last case. These values can also be obtained using Table

4, the starting sampling frequency being 20.46 MHz.

The correlation and FFT lengths are summarized in Table 6, as well as

the range of possible sampling frequencies.

5.2. Hardware implementation

In this section, the proposed and traditional algorithms are compared for

an implementation inside an FPGA, the Stratix III from Altera [23]. The

FFT used is the one provided by Altera, which requires a number of points

that is a power of two [24]. All other FPGA companies also provide FFT

with this restriction. Thus, only the third case is considered for the hardware

implementation. To perform the comparison, the resources estimated by

the Altera MegaWizard have been compared in terms of logic (counted as

Adaptive Look-Up Table, ALUT), memory (counted as memory block of
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9 Kibit, called M9K) and hardware multipliers (counted as Digital Signal

Processing (DSP) elements).

The implementations of the traditional and proposed algorithms are pro-

vided in Figs. 6 and 7, respectively. The FFT followed by the conjugate

operation has been replaced by an IFFT for the sake of simplicity, because

the local replica is a real signal [22]. The corresponding estimated resources

are provided in Table 7. It can be seen that the proposed algorithm requires

more resources than the traditional one, however the processing time is di-

vided by two since the FFT length is divided by two [22], leading to smaller

acquisition time and time to first fix when the incoming signal is stored in

a buffer for the acquisition [25]. Since the resources are increased by a fac-

tor lower than two (the memory is even reduced), the proposed algorithm is

more efficient than the traditional one.

If an increase of the resources is not wanted, the proposed algorithm can

be used with multiplexing as shown in Fig. 8. In this case, there is an

additional memory, but this additional resource is largely compensated by

the removal of two FFT blocks, as shown in Table 7. With multiplexing, the

processing time is similar to the one of the traditional algorithm (in fact it

is slightly lower due to the reduced latency of FFTs [22]).

The values provided in Table 7 are for a streaming implementation of the

Altera FFT block [24], however, using the buffered or the burst implementa-

tion (which require less resources but increase the processing time) leads to

similar results.
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5.3. Software implementation

In this section, the proposed and traditional algorithms are compared on

five different personal computers using Matlab. The FFT function of Matlab

is based on the FFTW library, which has no restriction on the FFT length

[26]. The average processing time over 1000 runs is shown in Fig. 9.

Focusing on the ranking of the algorithms, it can be seen that there are

mainly two groups. The first, with the longest processing time, includes

the traditional algorithm for a power of two length, and both algorithms

for the minimum length case. This is coherent with the expectation. For

L = 65 536, the FFT length is far higher than the other cases, which explains

a longer processing time. For the minimum FFT length case, since the length

contain high prime factors, the FFT algorithm is less efficient than for the

other cases. It can be noted that traditional algorithm is better than the

proposed one for this case, as expected (cf. Section 4.2). The other group

includes first the proposed algorithm for a power of two length, and then

both algorithms for length that have small prime factors. The last two have

equivalent performance, the proposed algorithm being slightly better on most

of the computers, although not expected according to Section 4.2.

Considering the radix-2 FFT, the theoretical number of multiplications

to perform an FFT is L
2

log2(L), with L the FFT length. The number of mul-

tiplications for the traditional algorithm is thus 3L
2

log2(L)+L, i.e. 1 638 400

multiplications with L = 65 536. The number of multiplications for the

proposed algorithm is 5L
2

log2(L) + 2L, i.e. 1 294 336 multiplications with

L = 32 768. The theoretical number of multiplications is thus reduced by 21

% (the reduction is similar for the number of additions). The result obtained
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in the software implementation is thus better than foreseen by the theoretical

complexity, since the proposed algorithm reduces the processing time by 39

% in average. It is difficult to explain the origin of this better performance,

an hypothesis is that since the speed of a 65536-point FFT is lower than a

32-368 points FFT [26], this favors the proposed algorithm.

5.4. Case with pre-averaging

To use smaller FFTs, it is possible to perform a sum before the FFT

in order to have one sample per chip [27], [28]. Since it is not possible to

know where is the beginning of the chips, the process is repeated starting

the sum at different phases. The proposed algorithm can be applied as well

in addition to this technique. Applying this technique to the L5, E5a and

E5b signals results in 10 230 points per code period. Considering the radix-

2 FFT, the proposed algorithm will be thus more efficient since the FFT

length will be 16 384 while the FFT length of the traditional algorithm will

be 32 768 (cf Table 4, the equivalent sampling frequency after pre-averaging

is 10.23 MHz).

6. Application to the acquisition of the E1 BOC(1,1) signal

In this section, a similar application study as in Section 5 is done, but

applied to the E1 signal processed as BOC(1,1), which has a different corre-

lation length.

6.1. Correlation and FFT lengths

As reported in Section 3.3, the smallest correlation length is N = 49 104

for the Galileo E1 signal processed as BOC(1,1).
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For the first case considered, the FFT length is 49 104 for the traditional

algorithm, and 36 828 (3/4 × 49 104) for the proposed algorithm with two

sub-correlations.

For the second case, the smallest number higher than 49 104 that has 2

and 3 as prime factors only is 49 152 = 214 × 3. The FFT length is thus

49 152 for the traditional algorithm, and 36 864 (212 × 32) for the proposed

algorithm with two sub-correlations.

For the third case, the smallest power of two higher than 49 104 is 65 536.

The FFT length is thus 65 536 for the traditional algorithm, as with the

L5, E5a and E5b signals acquisition. For the proposed algorithm, accord-

ing to Tables 2 and 3, the most suitable correlation length using two sub-

correlations is 87 380 with an FFT length of 65 536. This means that the FFT

length is identical to the FFT length of the traditional algorithm while there

are more FFTs, this case is thus not interesting. For the proposed algorithm

using three sub-correlations, according to Table 5, the most suitable correla-

tion length is 49 152 with an FFT length of 32 768 points. This means that

the FFT length is half the FFT length of the traditional algorithm, however

the algorithm requires six FFTs, consequently the proposed algorithm is less

efficient for the E1 BOC(1,1) signal than for the L5, E5a and E5b signals

(where only four FFTs were used). The correlation and FFT lengths are

summarized in Table 8.

6.2. Hardware implementation

The implementation of the traditional algorithm is identical to the one for

the L5, E5a and E5b signals, and the implementation of the proposed algo-

rithm with three sub-correlations is provided in Fig. 10. The corresponding
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resources are provided in Table 9, where it can be seen that the proposed

algorithm requires far more resources than the traditional one, more than a

factor 2 (except for the memory). Consequently, the proposed algorithm is

not more efficient than the traditional algorithm in this case.

6.3. Software implementation

The proposed and traditional algorithms are compared on five different

personal computers using Matlab as in Section 5.3. The average processing

time over 1000 runs is shown in Fig. 11.

The results are more heterogeneous than for the L5, E5a and E5b signals.

It can be seen that however, the least three performing algorithms are the

same as previously. The proposed algorithm for a power of two length is

less efficient than previously, which is expected since there are more FFTs

performed. Finally, the best two options are for an FFT length that has

small prime factors, with an advantage for the traditional algorithm this

time (which is expected according to Section 4.2).

In summary, it can be seen that the most efficient way to perform the cor-

relation is to use lengths with small prime factors and limited zero-padding.

Here, the small prime factors are 2 and 3, but 5 and 7 can be also consid-

ered. With this wide variety of length available, it is rarely possible to reduce

the zero-padding with the proposed algorithm to lead to better performance

(although possible in some specific cases, but the gain will be marginal).

Considering the radix-2 FFT, the theoretical number of multiplications

for the traditional algorithm with L = 65 536 is 1 638 400, as in Section

5. The number of multiplications for the proposed algorithm using three

sub-correlations is 7L
2

log2(L) + 3L, i.e. 1 818 624 multiplications with L =
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32 768. The theoretical number of multiplications is thus increased by 11

%. The result obtained in the software implementation is thus better than

foreseen by the theoretical complexity, since the proposed algorithm reduces

the processing time by 15 % in average.

6.4. Modifying the correlation length

The minimum correlation length was fixed according to the code length

and the code step. The code length is fixed, however, the code step can be

modified, impacting at the same time the code alignment loss.

The code step used for the E1 BOC(1,1) signal was 1/6 chip. By in-

creasing the code step in order to obtain a correlation length of N = 43 692

instead of 49 104, the comparison between the traditional and proposed algo-

rithm would be the same as for the L5, E5a and E5b signals. The code step

corresponding to this length is about 1/5.34 chip (2×4092/43 692), resulting

in a maximum and average loss of 2.87 dB and 1.31 dB, respectively. This

is very close to the loss using a code step of 1/6 chip, namely 2.50 dB at

maximum and 1.16 dB in average.

Consequently, it is possible to use a slightly larger step for the Galileo E1

BOC(1,1) signal, in order to be able to use the proposed algorithm with two

sub-correlations and smaller FFTs, as for the L5, E5a and E5b signals.

7. Application to the acquisition of the E1 BPSK signal

As reported in Section 3.3, the smallest correlation length is N = 16 368

for the Galileo E1 signal processed as BPSK.

For the first case considered, the FFT length is 16 368 for the traditional

algorithm, and 12 276 (3/4 × 16 368) for the proposed algorithm with two
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sub-correlations.

For the second case, the smallest number higher than 16 368 that has 2

and 3 as prime factors only is 16 384 = 214, which in fact has just 2 as prime

factor. The FFT length is thus 16 384 for the traditional algorithm, and

12 288 (212 × 3) for the proposed algorithm with two sub-correlations. Since

the FFT length for the traditional algorithm is a power of two, it is expected

that the proposed algorithm will be less efficient for this case.

For the third case, the smallest power of two higher than 16 368 is 16 384.

The FFT length is thus 16 384 for the traditional algorithm, as with the

second case. For the proposed algorithm, according to Tables 2 and 3, the

most suitable correlation length using two sub-correlations is 21 844, with

an FFT length of 16 384. This means that the FFT length is identical to

the FFT length of the traditional algorithm while there are more FFTs, this

case is thus not interesting. For the proposed algorithm using three sub-

correlations, according to Table 5, the most suitable correlation length is

24 576 still with an FFT length of 16 384 points. In fact, to halve the FFT

length, it would require to have at least 1023 sub-correlations, which is clearly

not efficient. The proposed algorithm is thus less efficient for this case also.

Consequently, the proposed algorithm is not efficient for the acquisition

of the E1 signal processed as BPSK considering the minimum sampling fre-

quency, 2.046 MHz. However, such a low sampling frequency has an impact

on the positioning accuracy, it is thus common to use a higher frequency.

In this case, the choice for the best algorithm with the radix-2 FFT can be

found using Table 4.
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8. Conclusions

In this article, we discussed the problem of decreasing the complexity of

the acquisition of the new GPS and Galileo signals that have a secondary code

that is not exploited. The straightforward solution of doubling the size of

the correlation and discarding half of the points calculated is not satisfying,

which led us to look for an algorithm that discards less points. The pro-

posed algorithm transforms the initial correlations into two or more smaller

sub-correlations, without loss of sensitivity since the samples of interest are

computed exactly.

The proposed algorithm is more efficient than the traditional algorithm

when the latter requires significant zero-padding. The zero-padding depends

on the sampling frequency and the type of FFT used, and can be significant

mainly when the radix-2 FFT is used. Considering then the radix-2 FFT,

the proposed algorithm is more efficient for half of the possible sampling

frequencies, which is interesting for hardware and DSP based receivers.

For the GPS L5, Galileo E5a and E5b signals, the minimum sampling

frequency, 20.46 MHz, is in a range where the proposed algorithm is more

efficient. It has been shown that the theoretical number of operations is

reduced by 21 %, the memory requirement is almost halved for an FPGA

implementation, and the processing time is reduced by 39 % in average on

personal computers.

For the Galileo E1 signal processed as BOC(1,1), the minimum sampling

frequency considered, 6.138 MHz, is in a range where the proposed algorithm

is not more efficient. However, if the sampling frequency is decreased to

5.4615 MHz at the expense of an average loss 0.15 dB, this sampling frequency
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is in a range where the proposed algorithm is more efficient, with the same

reduction as for the L5, E5a and E5b signals.

For the Galileo E1 signal processed as BPSK, the minimum sampling

frequency considered, 2.046 MHz, is in a range where the proposed algorithm

is not more efficient. For higher sampling frequencies, it is easy to check if

the proposed algorithm is more efficient or not using the tables provided in

this article.

Using similar analysis as done in this article, it is easy to determine if

the proposed algorithm is suitable for other and future GNSS signals. For

example, the E6 CS signal is a good candidate since the minimum correla-

tion length is half the one for the L5, E5a and E5B signals. The proposed

algorithm may be also interesting for the E6 PRS signal, the GPS M signal

or the future GLONASS CDMA and BeiDou signals.

The problem discussed in this article does not restrict to GNSS and to the

Parallel Code-phase Search. Any system that performs a circular correlation

(or a convolution) between two signals where one of them has half of zeros

and where half of the output is discarded can use the proposed algorithm.

For example, this problem is also present in the Double Block Zero Padding

acquisition method [29].
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Appendix A. Proposed algorithm to obtain two sub-correlations

The circular correlation between two sequences, h and x, can be defined

by Eq. A.1, where the overbar denotes the complex conjugate, mod denotes

the modulo operation, N is the length of the sequences and the FFT length.

y[n] =
N−1∑
k=0

h[k]x[(n+ k) mod N ] with n = 0, ..., N − 1

y = IFFT
(

FFT(h) FFT(x)
)

(A.1)

The circular correlation can also be written using matrix notation, as

shown in Eq. A.2, where y is a vector of N points, H is a circular matrix of

N ×N , and x is a vector of N points.

y[0]

y[1]

...

y[N − 2]

y[N − 1]


=



h[0] h[1] · · · h[N − 2] h[N − 1]

h[N − 1] h[0] · · · h[N − 3] h[N − 2]

...
...

. . .
...

...

h[2] h[3] . . . h[0] h[1]

h[1] h[2] . . . h[N − 1] h[0]





x[0]

x[1]

...

x[N − 2]

x[N − 1]


y = H x (A.2)

The operation explained in Section 3.3, consists in performing a circular

correlation where half of one of the signal is zeros. It can be then formulated

by Eq. A.3, which is similar to Eq. A.2, with h[n] = 0 for N/2 < n < N − 1.
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

y[0]

y[1]

...

y[N
2
− 1]

y[N
2
]

...

y[N − 2]

y[N − 1]



=



h[0] h[1] · · · h[N
2
− 1] 0 · · · 0 0

0 h[0] · · · h[N
2
− 2] h[N

2
− 1] · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 . . . h[0] h[1] . . . h[N
2
− 1] 0

0 0 . . . 0 h[0] . . . h[N
2
− 2] h[N

2
− 1]

...
...

. . .
...

...
. . .

...
...

h[2] h[3] . . . 0 0 . . . h[0] h[1]

h[1] h[2] . . . 0 0 . . . 0 h[0]





x[0]

x[1]

.

..

x[N
2
− 1]

x[N
2
]

...

x[N − 2]

x[N − 1]


y = H x (A.3)

First step : Use of the first half of the output only

As explained in Section 3.3, the second half of y is not used in our ac-

quisition problem. Consequently, the first step consists in removing the un-

necessary rows in the vector y and the matrix H, which gives Eq. A.4. At

this stage, yT (T for truncated) is a vector of N/2 points, HT is a matrix of

N/2×N , and x is a vector of N points.



y[0]

y[1]

...

y[N2 − 1]


=



h[0] h[1] · · · h[N2 − 1] 0 · · · 0 0

0 h[0] · · · h[N2 − 2] h[N2 − 1] · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 · · · h[0] h[1] · · · h[N2 − 1] 0





x[0]

x[1]

...

x[N2 − 1]

x[N2 ]

...

x[N − 1]


yT = HT x (A.4)

29

leclere
Text Box
Note : In Eq. (A.4), the sample x[N-2] is missing in the vector x.



Second step : Separation of the matrix

The second step consists in separating the matrix HT in two matrices,

H′T0 and H′T1, where H′T0 is HT with h[n] = 0 for N/4 < n < N/2− 1, and

H′T1 is HT with h[n] = 0 for 0 < n < N/4 − 1, such that HT is the sum of

H′T0 and H′T1, as shown in Eq. A.5.

yT = HT x

= (H′T0 + H′T1) x

=





h[0] h[1] · · · 0 0 · · · 0 0

0 h[0] · · · 0 0 · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 · · · h[0] h[1] · · · 0 0



+



0 0 · · · h[N2 − 1] 0 · · · 0 0

0 0 · · · h[N2 − 2] h[N2 − 1] · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 · · · 0 0 · · · h[N2 − 1] 0







x[0]

x[1]

...

x[N2 − 1]

x[N2 ]

...

x[N − 2]

x[N − 1]


(A.5)

These two matrices contain thus N/4 columns of zeros, without counting

the last column that was already present in HT. It is thus possible to remove

these columns from H′T0 and H′T1 to obtain the matrices HT0 and HT1, and

to remove the corresponding rows of x to obtain the vectors x0 and x1, as

30



shown in Eq. A.6. At this stage, yT is a vector of N/2 points, HT0 and HT1

are matrices of N/2× 3N/4, and x0 and x1 are vectors of 3N/4 points.

yT = (H′T0 + H′T1) x

= HT0 x0 + HT1 x1

=



h[0] h[1] · · · h[N4 − 1] 0 · · · 0 0

0 h[0] · · · h[N4 − 2] h[N4 − 1] · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 . . . 0 0 . . . h[N4 − 1] 0





x[0]

x[1]

...

x[N4 − 1]

x[N4 ]

...

x[ 3N4 − 2]

x[ 3N4 − 1]



+



h[N4 ] h[N4 + 1] · · · h[N2 − 1] 0 · · · 0 0

0 h[N4 ] · · · h[N2 − 2] h[N2 − 1] · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 . . . 0 0 . . . h[N2 − 1] 0





x[N4 ]

x[N4 + 1]

...

x[N2 − 1]

x[N2 ]

...

x[N − 2]

x[N − 1]


(A.6)

Third step : Making the matrices circular

From Eq. A.6, it can be seen that the matrices HT0 and HT1 have a

circular pattern. It is thus possible to transform them to the circular matrices
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H0 and H1 by adding N/4 rows, as shown in Eqs. A.7 and A.8.

H0 =



h[0] h[1] · · · h[N4 − 1] 0 · · · 0 0

0 h[0] · · · h[N4 − 2] h[N4 − 1] · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 . . . 0 0 . . . h[N4 − 1] 0

0 0 . . . 0 0 . . . h[N4 − 2] h[N4 − 1]

...
...

. . .
...

...
. . .

...
...

h[2] h[3] · · · 0 0 · · · h[0] h[1]

h[1] h[2] · · · 0 0 · · · 0 h[0]




N/2 rows

X
X

X
X

...

0

X
X

N/4 rows

X
X

...

[0]

[0]

(A.7)

H1 =



h[N4 ] h[N4 + 1] · · · h[N2 − 1] 0 · · · 0 0

0 h[N4 ] · · · h[N2 − 2] h[N2 − 1] · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 . . . 0 0 . . . h[N2 − 1] 0

0 0 . . . 0 0 . . . h[N2 − 2] h[N2 − 1]

...
...

. . .
...

...
. . .

...
...

h[N4 + 2] h[N4 + 3] · · · 0 0 · · · h[N4 ] h[N4 + 1]

h[N4 + 1] h[N4 + 2] · · · 0 0 · · · 0 h[N4 ]


(A.8)

Eq. A.6 can then be modified to obtain Eq. A.9. At this stage, yM (M

for modified) is a vector of 3N/4 points, H0 and H1 are circular matrices of

3N/4× 3N/4, and x0 and x1 are vectors of 3N/4 points. The vector yM is

composed of the initial vector yT of N/2 points, and of the vector yD (D for

discarded) of N/4 points.
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yM =

yT

yD

 = H0 x0 + H1 x1



y[0]

y[1]

.

.

.

y[N
2

− 1]

yD [0]

.

.

.

yD [N
4

− 2]

yD [N
4

− 1]



=



h[0] h[1] · · · h[N
4

− 1] 0 · · · 0 0

0 h[0] · · · h[N
4

− 2] h[N
4

− 1] · · · 0 0

.

.

.

.

.

.
.
. .

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

0 0 . . . 0 0 . . . h[N
4

− 1] 0

0 0 . . . 0 0 . . . h[N
4

− 2] h[N
4

− 1]

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

h[2] h[3] · · · 0 0 · · · h[0] h[1]

h[1] h[2] · · · 0 0 · · · 0 h[0]





x[0]

x[1]

.

.

.

x[N
4

− 1]

x[N
4
]

.

.

.

x[ 3N
4

− 2]

x[ 3N
4

− 1]



+



h[N
4
] h[N

4
+ 1] · · · h[N

2
− 1] 0 · · · 0 0

0 h[N
4
] · · · h[N

2
− 2] h[N

2
− 1] · · · 0 0

.

.

.

.

.

.
.
. .

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

0 0 . . . 0 0 . . . h[N
2

− 1] 0

0 0 . . . 0 0 . . . h[N
2

− 2] h[N
2

− 1]

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

h[N
4

+ 2] h[N
4

+ 3] · · · 0 0 · · · h[N
4
] h[ N

4+1
]

h[N
4

+ 1] h[N
4

+ 2] · · · 0 0 · · · 0 h[N
4
]





x[N
4
]

x[N
4

+ 1]

.

.

.

x[N
2

− 1]

x[N
2
]

.

.

.

x[N − 2]

x[N − 1]


(A.9)

Coming back with the initial notation, the operation performed in Eq.

A.9 can be computed using FFTs as shown by Eq. A.10

yM = IFFT
(

FFT(h0) FFT(x0)
)

+ IFFT
(

FFT(h1) FFT(x1)
)

= IFFT
(

FFT(h0) FFT(x0) + FFT(h1) FFT(x1)
)

(A.10)

33



with

h0 =
[
h[0] h[1] . . . h

[
N
4
− 1
] N/2︷ ︸︸ ︷

0 . . . 0
]

h1 =
[
h
[
N
4

]
h
[
N
4

+ 1
]
. . . h

[
N
2
− 1
]

0 . . . 0
]

x0 =
[
x[0] x[1] . . . x

[
3N
4
− 1
]]

x1 =
[
x
[
N
4

]
x
[
N
4

+ 1
]
. . . x [N − 1]

]
This means that instead of discarding half of the points calculated (N/2

N
), the

proposed algorithm discards only one third ( N/4
3N/4

).

Appendix B. Options with the signals length

Going back to Eq. A.6, it can be seen that the last column of HT0 and

HT1 contains only zeros, consequently, this column and the last point of x0

and x1 can be removed without modifying the result. In this case, H0 and

H1 are circular matrices of 3N/4 − 1 × 3N/4 − 1, x0 and x1 are vectors of

3N/4−1 points, and yM is a vector of 3N/4−1 points, without impacting the

wanted result yT, modifying only the discarded part yD, which now contains

N/4− 1 points.

Conversely, it is also possible to add columns of zeros to HT0 and HT1

after their last column, and add p points of any value at the end of x0 and

x1. By adding p columns, the length of the signals for the sub-correlations

becomes 3N/4 + p. The utility of this is shown in Section 4.3.
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Figure 6: Implementation of the traditional algorithm for the GPS L5, Galileo E5a and
E5b signals
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Figure 7: Implementation of the proposed algorithm for the GPS L5, Galileo E5a and E5b
signals
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Figure 8: Implementation of the proposed algorithm with multiplexing for the GPS L5,
Galileo E5a and E5b signals
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Figure 9: Average processing time of the algorithms on different computers for the GPS
L5, Galileo E5a and E5b signals (L is the FFT length). The CPU of the computers are
respectively : Core 2 Duo E4600 @ 2.40 GHz, QuadCore Xeon E5430 @ 2.66 GHz, Core
2 Duo E6700 @ 2.66 GHz, QuadCore Xeon E5430 2.66 GHz, Mobile Dual Core i7-2620M
@ 3.2 GHz.
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Figure 10: Implementation of the proposed algorithm for the E1 BOC(1,1) signal
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Signal
GPS L5 Galileo E5a Galileo E5b Galileo E1

I Q I Q I Q Q Q

Carrier frequency
1176.45 1176.45 1207.14 1575.42

(MHz)

Primary code
10.23 10.23 10.23 1.023

chipping rate (Mchip/s)

Primary code
10 230 10 230 10 230 4092

length (chip)

Secondary code
1000 1000 1000 250

chipping rate (chip/s)

Secondary code
10 20 20 100 4 100 - 25

length (chip)

Data rate
100 - 50 - 250 - 250 -

(bit/s)

Table 1: Properties of the GPS L5 and Galileo E5a, E5b and E1 signals
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l 5 7 9 11 13 15 17 19

L = 2l 32 128 512 2048 8192 32 768 131 072 524 288

N 44 172 684 2732 10 924 43 692 174 764 699 052

Table 2: Possible correlation length (N) and radix-2 FFT length (L) of the proposed
algorithm with two sub-correlations for l odd.
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l 6 8 10 12 14 16 18 20

L = 2l 64 256 1024 4096 16 384 65 536 262 144 1 048 576

N 84 340 1364 5460 21 844 87 380 349 524 1 398 100

Table 3: Possible correlation length (N) and radix-2 FFT length (L) of the proposed
algorithm with two sub-correlations for l even.
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Sampling Range FFT length for the FFT length for the

frequency (MHz) (MHz) traditional algorithm proposed algorithm

1.023− 1.024 0.001 2048 2048

1.025− 1.366 0.341 4096 2048

1.367− 2.048 0.681 4096 4096

2.049− 2.730 0.681 8192 4096

2.731− 4.096 1.365 8192 8192

4.097− 5.462 1.365 16 384 8192

5.463− 8.192 2.729 16 384 16 384

8.193− 10.922 2.729 32 768 16 384

10.923− 16.384 5.461 32 768 32 768

16.385− 21.846 5.461 65 536 32 768

21.847− 32.768 10.921 65 536 65 536

32.769− 43.690 10.921 131 072 65 536

Table 4: Radix-2 FFT length for the traditional and proposed algorithms with two sub-
correlations in function of the sampling frequency considering a 1-ms code. For a 4-ms
code, multiply the actual sampling frequency by 4.
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l 7 8 9 10 11 12 13

L = 2l 128 256 512 1024 2048 4096 8192

N 192 384 768 1536 3072 6144 12 288

l 14 15 16 17 18 19 20

L = 2l 16 384 32 768 65 536 131 072 262 144 524 288 1 048 576

N 24 576 49 152 98 304 196 608 393 216 786 432 1 572 864

Table 5: Possible correlation length (N) and radix-2 FFT length (L) of the proposed
algorithm with three sub-correlations.
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Algorithm
Minimum Minimum FFT length Power of two

FFT length with small prime factors FFT length

Traditional

N = 40 920 N = 41 472 N = 65 536

L = 40 920 L = 41 472 L = 65 536

fs = 20.46 fs ∈ [20.46− 20.736] fs ∈ [20.46− 32.768]

Proposed

N = 40 920 N = 41 472 N = 43 692

L = 30 690 L = 31 104 L = 32 768

fs = 20.46 fs ∈ [20.46− 20.736] fs ∈ [20.46− 21.846]

Table 6: Correlation length (N), FFT length (L) and sampling frequency (fs, in MHz)
for the acquisition of the GPS L5, Galileo E5a and E5b signals
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Algorithm
Logic usage Memory usage Multipliers usage

(ALUT) (M9K) (DSP element)

Traditional 22 881 3648 76

Proposed 36 006 3040 128

Proposed with
21 618 1952 76

multiplexing

Table 7: FPGA resources for the GPS L5, Galileo E5a and E5b signals with the traditional
(N = L = 65 536) and proposed (N = 43 692 and L = 32 768) algorithms.
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Algorithm
Minimum Minimum FFT length Power of two

FFT length with small prime factors FFT length

Traditional

N = 49 104 N = 49 152 N = 65 536

L = 49 104 L = 49 152 L = 65 536

fs = 6.138 fs ∈ [6.138− 6.144] fs ∈ [6.138− 8.192]

Proposed

N = 49 104 N = 49 152 N = 49 152*

L = 36 828 L = 36 864 L = 32 768*

fs = 6.138 fs ∈ [6.138− 6.144] fs ∈ [6.138− 6.144]

Table 8: Correlation length (N), FFT length (L) and sampling frequency (fs, in MHz)
for the acquisition of the E1 BOC(1,1) signal. (*use three sub-correlations)
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Algorithm
Logic usage Memory usage Multipliers usage

(ALUT) (M9K) (DSP element)

Traditional 22 881 3648 76

Proposed 50 430 4256 180

Table 9: FPGA resources for the traditional (N = L = 65 536) and proposed algorithms
(N = 49 152 and L = 32 768 with three sub-correlations) for the E1 BOC(1,1) signal
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